Highly linear polarized emission at telecom bands in InAs/InP quantum dot-nanowires by geometry tailoring - École Centrale de Lyon
Article Dans Une Revue Nanoscale Année : 2021

Highly linear polarized emission at telecom bands in InAs/InP quantum dot-nanowires by geometry tailoring

Résumé

Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to realize polarized-dependent light sources and photodetectors. We present a growth procedure to produce InAs/InP quantum dot-nanowires (QD-NWs) with an elongated top-view cross-section relying on the vapor-liquid-solid method using molecular beam epitaxy. By interrupting the rotation of the sample during the radial growth sequence of the InP shell, hexagonal asymmetric (HA) NWs with long/short cross-section axes were obtained instead of the usual symmetrical shape. Polarization-resolved photoluminescence measurements have revealed a significant influence of the asymmetric shaped NWs on the InAs QD emission polarization with the photons being mainly polarized parallel to the NW long cross-section axis. A degree of linear polarization (DLP) up to 91% is obtained, being at the state of the art for the reported DLP values from QD-NWs. More importantly, the growth protocol herein is fully compatible with the current applications of HA NWs covering a wide range of devices such as polarized light emitting diodes and photodetectors.

Dates et versions

hal-03269925 , version 1 (24-06-2021)

Identifiants

Citer

Ali Jaffal, Philippe Regreny, Gilles J Patriarche, Michel Gendry, Nicolas Chauvin. Highly linear polarized emission at telecom bands in InAs/InP quantum dot-nanowires by geometry tailoring. Nanoscale, 2021, 13, pp.16952-16958. ⟨10.1039/D1NR04263G⟩. ⟨hal-03269925⟩
58 Consultations
0 Téléchargements

Altmetric

Partager

More