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Abstract

Numerical models are essential for comprehending intricate physical phenomena in different
domains. To handle their complexity, sensitivity analysis, particularly screening, is crucial for
identifying influential input parameters. Kernel-based methods, such as the Hilbert Schmidt
Independence Criterion (HSIC), are valuable for analyzing dependencies between inputs and
outputs. Implementing HSIC requires data from the original model, which leads to the need
of efficient sampling strategies to limit the number of costly numerical simulations. While, for
independent input variables, existing sampling methods like Latin Hypercube Sampling (LHS)
are effective to estimate HSIC with reduced variance, incorporating dependence is challenging.
This paper introduces a novel LHS variant, quantization-based LHS (QLHS), which leverages
Voronoi vector quantization to address dependent inputs. The method provides good coverage
of the range of variations in the input variables. The paper outlines expectation estimators
based on QLHS in various dependency settings, demonstrating their unbiasedness. The method
is applied on several models of growing complexities, first on simple examples to illustrate the
theory, then on more complex environmental hydrological models, when the dependence is
known or not, and with more and more interactive processes and factors. The last application
is on the digital twin of a French vineyard catchment (Beaujolais region) to design a vegetative
filter strip and reduce water, sediment and pesticide transfers from the fields to the river.
QLHS is used to compute HSIC measures and independence tests, demonstrating its usefulness,
especially in the context of complex models.
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1 Introduction

Numerical models are used to represent and understand complex physical phenomena fields such
as in biology, geophysics, or hydrology, where processes are highly interactive. Such models can be
complicated (e.g., black-box models), expensive, and difficult to use when, for example, the goal
is to derive a digital twin for a specific real-world context. In order to address these challenges, it
may be beneficial to replace the model with a metamodel, or surrogate model. A surrogate model
can be defined as a statistical model of the process-based model, and it is less costly to run than
the original model. Recent studies have demonstrated the value of surrogate models in the domain
of digital twins, particularly in terms of enhancing efficiency and real-time performance. White
box models are subject to limitations due to incomplete knowledge and computational constraints,
surrogate models offer a viable alternative see, e.g., the review of [1]. Recent studies highlight how
surrogate models can improve the efficiency and applicability of digital twins: in a first application
on proton exchange membrane fuel cells (PEMFCs), a hybrid surrogate model that combines a
three-dimensional physical model with data-driven methods has been shown to significantly reduce
computation time while maintaining high accuracy [2]. Furthermore, as digital twins are often
tasked with data processing, the use of surrogate models, such as Gaussian process regressors,
can prove advantageous to deal with interactive dynamics as demonstrated in [3]. These insights
underscore how surrogate models can improve both the efficiency and effectiveness of digital twins.
When a model deals with numerous input parameters, before learning a surrogate model it is
helpful to perform a global sensitivity analysis [4] to eliminate a large set of inputs that are poorly
influential on the studied outputs. For this screening step, Kernel-based methods, such as HSIC
[5] which measures the dependence between inputs and outputs are very useful and have been
implemented for a wide range of applications, with scalar data, vector, functional [6], or even sets
[7]. The implementation of HSIC requires a sample of runs of the costly computational code, which
will later be used to fit a surrogate model in a reduced-dimensional space. Therefore, it is essential to
build a design of computer experiments that is both small and fills as much space as possible. This
is commonly referred to as a space-filling design. Yet, the physical reality of models often imposes
dependence between input variables. One example is hydrology, where soil moisture is governed
by the Van Genuchten equations [8]. The parameters of the Van Genuchten model are influenced
by soil type, leading to a group of interdependent variables. From a design space-filling point of
view, it’s therefore essential to offer a solution that takes dependence into account. In the case of
independent variables several space-filling designs, such as LHS [9], and low-discrepancy sequences,
in particular Sobol sequences [10] are commonly used. LHS are often preferred [11] since they ensure
space-filling properties projected onto subspaces, allowing accurate estimation of metamodels and
good marginal covering stable after dimension reduction. Besides, they provide good properties
for estimation of expectation, as required for HSIC measure computation [6]. Extensions of LHS
to account for dependency have been made by [12, 13, 14], using methods based on ranks and
copulas, the latter requiring knowledge of copulas and quantile functions not always available in
practice. Alternatively, kernel-based methods such as kernel herding [15] consist in minimizing a
squared Maximum Mean Discrepancy (MMD) between an iteratively-built sequence of points and
the target correlated joint distribution. These deterministic approaches strongly depend on the
choice of the kernels and introduce a bias in estimation of expectations, such as HSIC. There is
therefore an interest in providing a ready-to-use method that requires a minimum of assumptions.

In this paper, we introduce a new LHS method based on Voronoi vector quantization (VQ) to
take into account dependent inputs. In [16], a design of experiments based on VQ is proposed,
similar to LHS, with a Latinization procedure involving ranking Later, the approach in [17] applies
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VQ to stratification by randomly drawing M points per Voronoi stratum for application to functional
data. The main difficulties with these methods are that they do not take dependency into account.
Our new numerical sampling strategy, called quantization-based LHS, is a direct extension of Latin
Hypercube sampling based on Voronoi quantization to take into account dependence within a group
of input variables. It has good properties because it swaps the bias resulting from the use of
Voronoi centroids for variance by randomly drawing a point in the Voronoi cells. This ensures
complete coverage of the group of dependent variables being stratified. Combined with random
permutations, we get a well-distributed design across all the marginals: the independent part and
the dependent part. All that is required is how to simulate its distribution (and thus conditionally
on the Voronoi cells).

To this end, in Section 2, existing LHS technics and Voronoi vector quantization are briefly
recalled, with special reference to optimal quantization. Then, in Section 3, the contribution of this
paper is presented. That is, expectation estimation using LHS in the context of dependent random
variables based on vector quantization. Different estimators are proposed to cover three different
settings:

• A unique group of dependent inputs.

• A joint distribution between a group of dependent inputs and another group of independent
inputs, the two groups being independent of each other.

• A joint distribution between two independent groups of dependent variables.

In particular, it is shown that the proposed estimators are unbiased. Finally, quantization-based
LHS is applied to the computation of HSIC measures and independence tests in Section 4. To
illustrate the relevance of these developments, they are tested and compared to other existing
methods on two operational environmental models in Section 5: (i) a flood risk model where the
dependency structure between inputs and the marginal laws are perfectly known and (ii) a chain of
models that simulates water, sediment and pesticide transfers, where dependency is unknown. This
last application is implemented on the digital twin of a real vineyard catchment in France (Morcille
experimental site), where pollution of agricultural origin by pesticides is a recognized public health
problem [18].

2 Existing tools : Latin hypercube sampling and Voronoi

vector quantization

2.1 Latin hypercube sampling and Latin hypercube sampling with de-
pendence

The objective of a LHS of size N , as introduced by [9], is to sample N points uniformly in [0, 1]d

such that marginally the projected points are well spread on [0, 1]. The support of each coordinate,
i.e. [0, 1], is partitioned into N sub-intervals of equal size 1

N
. The points are drawn in [0, 1]d by

associating each coordinate to one sub-interval and by uniformly sampling in this sub-interval. The
LHS procedure is as follows :

We aim to estimate E[f(X)] where f ∈ L2(Rd) and X ∼ U([0, 1]d), d ∈ N∗. Given an LHS
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Algorithm 1 LHS

1: Generate N independent samples (Ui1, . . . , Uid)i=1,...,N , where Uij is i.i.d U([0, 1]).
2: Generate d independent equiprobable permutations π1, . . . , πd of {1, . . . , N}. πj(i) is the value

to which i is mapped by the jth permutation.
3: An LHS is given by: {

Vij =
πj(i)−1

N
+

Uij

N

j = 1, . . . , d , i = 1, . . . , N

(Vi1, . . . , Vid)1≤i≤N of U([0, 1]d), the LHS estimator of the expected value is :

µLHS =
1

N

N∑
i=1

f(Vi1, . . . , Vid)

It is unbiased, and the variance satisfies V ar(µLHS) ≤ N×V ar(µMC)
N−1

, implying that using an LHS of
size N ensures a variance that is less than or equal to that of a Monte Carlo (MC) sample of the
same size, see [19]. Furthermore, a central limit theorem for the estimator is provided in [20]. It
stratifies the marginal distribution to maximize coverage of the range of each variable. However, the
use of LHS imposes the independence of random variables, which raises an issue if the model inputs
are correlated. Therefore, it is crucial to use an appropriate sampling strategy to take dependence
into account. Over the years, several modifications to LHS have been proposed to incorporate
dependence. For instance, a rank-based approach was introduced in [12] and further improved by
[13], though this method results in a biased estimator.

Recently, a copula-based Latin Hypercube Sampling method, Latin Hypercube Sampling with
Dependence (LHSD), was introduced in [14], allowing the incorporation of dependence into the
experimental design while retaining the properties of LHS. The LHSD procedure proposed by [14]
is based on the copula (and conditional copulas) construction summarized in Algorithm 2. Consider
a random vector X = (X1, ..., Xd) of joint c.d.f F where the marginal c.d.f are denoted Fj for all
j = 1, . . . , d and C a copula. In particular, C is a distribution with uniform marginals. Sklar’s
theorem [21] allows a copula to be associated with any multidimensional distribution. The copula
makes it possible to model the dependence between the marginals, if F is continuous and let
Fj(Xj) =: Uj, then :

C(U1, . . . , Ud) = F
(
F−1
1 (U1), . . . , F

−1
d (Ud)

)
The j-th conditional copula is defined by :

Cj(Uj | U1, . . . , Uj−1) = φ(U1, . . . , Uj−1, Uj)

where φ(u1, . . . , uj−1, uj) =
∂j−1C(u1,...,uj ,1,...,1)

∂u1...∂uj−1
. The inverse of the j-th conditional copula, denoted

C−1
j , at some probability 0 ≤ q ≤ 1, solves the equation:

Cj(uj | U1 = u1, . . . , Uj−1 = uj−1) = q

for uj ∈ [0, 1]. Explicitly, C−1
j is defined as:

C−1
j (q | u1, . . . , uj−1) = uj,
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Algorithm 2 LHSD from [14]

1: Generate an LHS sample (Zi1, . . . , Zid)i=1,...,N of [0, 1]d using Algorithm 1.
2: Construct sequentially (Ui1, . . . , Uid)i=1,...,N from the joint copula using inverse conditional cop-

ula functions:

Uij = C−1
j (Zij|Ui1, . . . , Uij−1)

for j = 1 . . . d.
3: Construct the final sample : (Xi1, . . . , Xid)i=1,...,N using the inverse distribution function Xij =

F−1
j (Uij) for j = 1, . . . , d.

The properties of the LHSD estimator are similar to those of the LHS as justified in [14]. Specif-
ically, when estimating an expected value, the variance of LHSD is lower than the variance from a
simple Monte Carlo sample.

The aim is to reconstruct the dependence of the marginals sequentially by constructing a sam-
ple on [0, 1] from the inverse of the conditional copula, starting from an LHS sample. To obtain a
LHSD, apply the quantile transformation to this sample.

The LHSD method involves selecting a copula from a model to describe the dependency structure
(e.g, Gaussian, Clayton), estimating its parameters, and accessing the inverses of the conditional
copulas as well as the inverse c.d.f. of marginals. This process can be complex from a numerical
perspective, leading to estimation errors and suboptimal copula selection. Ultimately, this can re-
sult in a less efficient expectation estimate.

In contrast, our proposed method based on vector quantization overcomes these limitations by
only requiring the ability to simulate the joint distribution. This data-driven approach eliminates
the need for copula selection and estimation, thereby reducing implementation complexity and the
risk of errors. The few requirements of our method are directly linked to its reliance solely on the
joint distribution points, making it a more practical and robust alternative.

2.2 Background on vector quantization

Vector quantization was first introduced in signal processing during the 1950s as a method of
discretizing continuous signals. It is now widely used in various applications, including speech
recognition [22], image compression [23], and numerical probability [24]. The latter is of particular
interest to us. Consider a probability space (Ω,A,P).

Let X be a random vector with values in Rd with PX its distribution and N ∈ N∗. Let
Γ = {x1, . . . , xN} ⊂ Rd, the Voronoi partition associated to Γ is defined as (Ci)i=1...N such that

Ci(Γ) ⊂
{
y ∈ Rd : |y − xi| ≤ min

1≤j≤N
|y − xj|

}
The Voronoi quantizer can be defined as follows:

qvor(X) =
N∑
i=1

xi1Ci(Γ)(X)
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The quantized variable qvor(X) is often denoted as X̂. It is the discrete version of X with the N
support points x1, . . . , xN . Similarly, the quantized probability distribution PX̂ of PX induced by Γ
is given by :

PX̂ =
N∑
i=1

PX (Ci(Γ)) δxi

where δxi
is the Dirac mass centered on xi.

To assess the performance of the X̂ quantizer, we introduce the quadratic distortion function
associated to Γ = {x1, . . . , xN} :

DX
N (Γ) = ∥d(X,Γ)∥2L2(P) = E

[
min

1≤i≤N
|X − xi|2

]
=

∫
Rd

min
1≤i≤N

|xi − y|2PX(dy)

Any quantizer that minimizes distortion is called an optimal quantizer. If X ∈ L2(P), then the
existence of such quantifiers is assured. However, uniqueness is not systematically obtained (1D

case of unimodal distributions) [25, 24]. Furthermore, any N -optimal quantizer X̂ is a stationary
quantizer i.e :

X̂ = E
[
X |X̂

]
In practice, this property enables the construction of fixed-point algorithms to obtain optimal (or at
least suboptimal) quantization. The most well-known of these algorithms is Lloyd’s algorithm [26],
also known as k-means. It is very popular and easy to implement, especially if the distribution of X
is known from a large sample of simulated points. An example of optimal quantization is given in
figure 1, based on the centered bivariate normal distribution X = (X1, X2) with cov(X1, X2) = 0.8.

In the context of vector quantization, cubature formulas are available to compute E[f(X)] where
X is a random vector on Rd and f : Rd → R a function [24]:

E[f(X)] ≈ E[f(X̂)] =
N∑
i=1

f(xi)P
[
X̂ = xi

]
=

N∑
i=1

f(xi)P [X ∈ Ci]

The accuracy of this estimate depends on the regularity of f . If f is L-Lipschitz, L > 0, then∣∣∣∣E [f(X)]− E
[
f
(
X̂
)] ∣∣∣∣ ≤ L

√
DX

N (Γ)

If f ∈ C1(Rd,R), ∇f is L-Lipschitz, and X̂ is stationary, then :∣∣∣∣E [f(X)]− E
[
f
(
X̂
)] ∣∣∣∣ ≤ L

2
DX

N (Γ)

Unlike Monte Carlo estimation, vector quantization estimation is deterministic. The estimator is
therefore variance-free, but biased, whereas Monte Carlo estimation is unbiased, but with variance.
This leads to modification of estimation through vector quantization with the addition of controlled
randomness, such as in stratification. Thus, one contribution of the paper is to introduce a stochastic
version of vector quantization. This procedure will be used for the group of dependent inputs and
associated to independent inputs in an LHS-style. This new methodology called quantization-based
LHS is discussed in the following section.
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Figure 1: Voronoi quantization of the centered bivariate, with covariance of 0.8 between marginals
encoded into N = 500 centroids. On the left : Voronoi tessellation of 500 random points from
the joint distribution. On the right, Voronoi tessellation of 500 centroids obtained via optimal
quantization (kmeans).

3 Quantization-based Latin hypercube sampling

In this section, we introduce different sampling strategies which account for dependency and such
that the space-filling property is maintained after dimension reduction, so they can be used for
screening purposes. It should be noted that we do not guarantee a strict space-filling property
in the multidimensional space. However, we do achieve a well-distributed sample by ensuring a
good spread in each marginal dimension and in each group of dependent inputs. For each sampling
strategy, we study the estimation of m = E[f(X)], for f : Rd → R, f ∈ L2(Rd), where

• case 1 : X = (X1, . . . , Xd) with d dependent components.

• case 2 : X = (Xdep, Xindep) with Xdep composed of s dependent components, and Xindep =
(Xs+1, . . . , Xd) composed of d− s independent components and Xdep and Xindep are indepen-
dent.

• case 3 : X = (XG1 , XG2) with XG1 = (X1, . . . , Xs) composed of s dependent components,
XG2 = (Xs+1, . . . , Xd) composed of d− s dependent components and XG1 and XG2 are inde-
pendent.

3.1 Random quantization (case 1)

In this section, X is composed of a unique group of d dependent components X1, . . . , Xd. We
introduce a stochastic version of vector quantization, called Random Quantization (RQ) to account
for dependency. RQ is a stratification technique. The strata are the Voronoi cells obtained after
quantization. A point is randomly drawn in each cell according to the probability distribution of X
conditional on the cell. RQ is summarized in Algorithm 3.
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Algorithm 3 RQ

Let X ∈ Rd be a random vector composed of d dependent components.
Let (xi1, . . . , xid)i=1,...,N be a N -optimal quantizer of X. Let (Ci)i=1,...,N be the associated Voronoi
partition of Rd.
for i = 1 to N do

Generate one random point Ui = (Ui1, . . . , Uid) in the cell Ci according to the probability
distribution of X conditioned on Ci, i.e. Ui ∼ L(X |X ∈ Ci).
end for
return U = (U1, . . . , UN)

The use of randomized vector quantization for design of computer experiment has the advantage
that it only requires knowledge of how to simulate in Voronoi cells. No knowledge of copulas or
quantile functions is necessary. This allows for the entire distribution of X to be explained using a
finite number of support points, while perfectly accounting for input dependence.

Definition 3.1. Let (Ui)i=1...N a sample provided by Algorithm 3. We define the following RQ
estimator :

µRQ :=
N∑
i=1

f(Ui)P[X ∈ Ci]. (1)

Proposition 3.1. µRQ is an unbiased estimator of m, and its variance is given by :

Var (µRQ) =
N∑
i=1

P[X ∈ Ci]
2Var (f(Ui))

The proof of Proposition 3.1 can be found in Appendix A. We illustrate the behavior of µRQ on
two toy examples. We first consider the function f : R → R defined for all x ∈ R by f(x) = x2 and
look for E[f(X)] with X ∼ N (0, 1). In the context of using a costly numerical model, the number
of model evaluations is limited, therefore we choose low values of N (10, 20, 50, and 100) and the
behavior of µRQ is studied through 1000 repetitions. The results, summarized in Figure 2, show that
the estimator is unbiased and that its variance decreases as N increases. µRQ is compared to Monte
Carlo and LHS estimation. We recall that to obtain an LHS sample we first apply Algorithm 1 to
produce a sample in [0, 1] to which the inverse of standard Gaussian c.d.f is applied. µRQ exhibits
lower variance at low N , making it the most efficient method in this case. It should be noted that,
in this example, there is no dependency, yet RQ utilization is still feasible. This straightforward
example offers an opportunity to examine the characteristics of the proposed µRQ weight estimator,
which has been demonstrated to be effective. We consider a second 2D example with correlation
between marginals. Let X = (X1, X2) be a centered Gaussian vector such that cov(X1, X2) = 0.8.
To estimate E(X1X2), Monte Carlo, LHSD and RQ were used. The results are shown in Figure 3.
A Gaussian copula with a correlation of 0.8 was used, and an analytical expression for the inverse
of the conditional copula is known. All three estimators are unbiased, and the proposed estimator,
µRQ, has minimal variance.
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Figure 2: Estimation of E(X2) where X ∼ N (0, 1) with sample size N = 10, 20, 50, 100 and 1000
repetitions per N . The red dashed line is the theoretical value.
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Figure 3: Estimation of E(X1X2) where X = (X1, X2) is a centered Gaussian vector with covariance
0.8 with sample size N ∈ {10, 20, 50, 100} and 500 repetitions per N . The red dashed line is the
theoretical value of 0.8.
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3.2 Quantization-based Latin hypercube sampling (case 2)

Consider Xdep = (X1, . . . , Xs), s ∈ N∗, a random vector with dependent components and Xindep =
(Xs+1, . . . , Xd), a group of independent random variables. Xdep and Xindep are independent. In the
dependent group of inputs Xdep, the sole assumption made regarding the dependence structure is

P(X1,...,Xs) ̸=
s⊗

i=1

PXi

Then, it can be either linear (correlation) or more general. We want to summarize the theoret-
ical distribution of (Xdep, Xindep) though an empirical sample of N points in Rd which preserves
space-filling properties after dimension reduction. To do so, we stratify Xdep using the Random
Quantification procedure introduced in section 3.1. In the same way, we stratify Xindep using an
LHS sample. The idea is then to associate to each stratum of Xdep a stratum of Xindep using a
random permutation π. The sampling scheme is described in Algorithm 4.

Algorithm 4 Quantization-based LHS

Let Xdep ∈ Rs be a random vector composed of s dependent components.
Apply Algorithm 3 to provide a RQ sample U = (U1, . . . , UN) of Xdep.
Let Xindep ∈ Rd−s be a random vector composed of d− s independent components.
Apply Algorithm 1 to provide an LHS sample V = (V1, . . . , VN) of Xindep.
Let π be a random permutation of {1, . . . , N} in {1, . . . , N}.
return ((U1, Vπ(1)), . . . , (UN , Vπ(N)))

Definition 3.2. Let ((Ui, Vπ(i)))i=1...N a sample provided by Algorithm 4 where Ui ∼ L(Xdep|Xdep ∈
Ci) and (Ci)i=1,...,N is the Voronoi tessellation associated to the quantization of Xdep. We define the
following Quantization-based LHS estimator :

µQLHS :=
N∑
i=1

P[Xdep ∈ Ci]f(Ui, Vπ(i)) (2)

Proposition 3.2. µQLHS is an unbiased estimator of m.

The proof of Proposition 3.2 can be found in Appendix A. To illustrate the behavior of the µQLHS

estimator, we begin by considering an initial case. Similar to RQ, this case assumes no dependencies.
However, it allows for testing the previously introduced µQLHS estimator, which combines a stratified
variable with weights varying from one state to another and another variable with identical weights.
We study the behavior of µQLHS through the function f : R2 → R defined for all (x, y) ∈ R2 by
f(x, y) = x2y. The problem is to estimate E[f(Xdep, Xindep)] where Xdep ∼ N (0, 1) and Xindep ∼
U ([0, 1]). The results are summarized in Figure 4, leading to the same conclusion as for µRQ.
Specifically, the estimator is unbiased and has decreasing variance, resulting in better performance
than the typical Monte Carlo and LHS techniques. By estimating E((X1 + X2)

2Xindep) through
the addition of dependence in Xdep = (X1, X2) from a centered bivariate Gaussian vector, we have
obtained results shown in Figure 5. The LHSD method is parameterized based on the Gaussian
copula with parameter ρ = 0.8. It is observed that µQLHS is unbiased with lower variance than the
Monte Carlo and LHSD methods for all sample sizes, and therefore offers the best performance.
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3.3 Double Quantization-based Latin hypercube sampling

Considering two independent random vectors XG1 ∈ Rs and XG2 ∈ Rd−s where G1 (resp. G2)
stands for ”Group 1” (resp. 2), each composed of several dependent variables. We want to
compute E[f(XG1 , XG2)] where f : R2 → R is a continuous function. Let consider two samples
U = (U1, . . . , UN) and V = (V1, . . . , VN) of XG1 and XG2 obtained via RQ from Algorithm 3. These
two samples preserve the correlation inside each group of dependent variables. In the same manner
as in the previous section, the idea is to associate to each stratum of XG1 a stratum of XG2 using
a random permutation π. The sampling scheme is described in Algorithm 5.

Algorithm 5 Double Quantization-based LHS

Let XG1 ∈ Rs be a random vector composed of s dependent components.
Apply Algorithm 3 to provide a RQ sample U = (U1, . . . , UN) of XG1 .
Let XG2 ∈ Rd−s be a random vector composed of d− s dependent components.
Apply Algorithm 3 to provide a RQ sample V = (V1, . . . , VN) of XG2 .
Let π be a random permutation of {1, . . . , N} in {1, . . . , N}.
return ((U1, Vπ(1)), . . . , (UN , Vπ(N)))

Definition 3.3. Let ((Ui, Vπ(i)))i=1...N a sample provided by Algorithm 5 where

• Ui ∼ L(XG1|XG1 ∈ C
XG1
i ) and (C

XG1
i )i=1,...,N is the Voronoi tessellation associated to the

quantization of XG1

• Vj ∼ L(XG2|XG2 ∈ C
XG2
j ) and (C

XG2
j )j=1,...,N is the Voronoi tessellation associated to the

quantization of XG2

We define the following Q2LHS estimator :

µQ2LHS :=
1∑N

i=1 piqπ(i)

N∑
i=1

piqπ(i)f
(
Ui, Vπ(i)

)
(3)

where ∀1 ≤ i ≤ N , pi = P(XG1 ∈ C
XG1
i ) and ∀1 ≤ j ≤ N , qj = P(XG2 ∈ C

XG2
j ).

Figure 6 shows 1000 iterations of the estimate of E(XG1X
2
G2

+ X2
G2
) where XG1 ∼ LN (0, 1)

(log-normal distribution) and XG2 ∼ N (0, 1) with its confidence interval. It is observed that the
Q2LHS estimator is asymptotically unbiased. Figure 7 compares the Q2LHS estimator with Monte
Carlo and LHSD with N ∈ {10, 20, 50, 100}. The estimator is asymptotically unbiased and performs
better than conventional Monte Carlo and LHS estimators, with smaller variance and fewer outliers.

4 Application to kernel-based sensitivity analysis

When building a surrogate model (or metamodel) for a numerical computation code, it is useful
to carry out a preliminary selection of the most influential input variables [27]. This step is called
screening and is crucial when the number of input parameters is large. It allows tuning the meta-
model in a limited dimension space and thus requires a reduced number of costly evaluations of
computer experiments. The goal of this section is to show how Quantization-based LHS allows
estimating Sensitivity Analysis HSIC measures taking dependence into account.
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4.1 Kernel-based sensitivity analysis

Consider a numerical model M such that for X ∈ Rd, M(X) ∈ R. Let K ̸= ∅ and H be a Hilbert
space of real functions in K.

Definition 4.1 (Reproducing kernel). A kernel k : K ×K → R of H is reproducing if we have :
∀x ∈ K, k(·, x) ∈ H and if it verifies the reproducing property :

∀f ∈ H, x ∈ K, f(x) = ⟨f, k(·, x)⟩

The space H is said to be a Reproducing Kernel Hilbert Space (RKHS) if, for all x ∈ K, the Dirac
function δx : H → K defined as

∀f ∈ H, δx(f) = f(x)

is continuous.

For more details on RKHS, the reader is referred to [28].

Definition 4.2 (Kernel embedding). Let M+
1 the space of probability measures on K. Consider

H the RKHS induced by a kernel k : K ×K → R. We define the kernel mean embedding as

µ :

{
M+

1 → H
P 7→

∫
k(·, x)dP(x)

Consider X = (X1, . . . , Xd) a random vector defined on X = X1×· · ·×Xd and Y a scalar output
(which can be extended to vector or functional outputs) where Y := M(X) and M : X → R is a
black-box numerical model. For a given set of indices A ⊂ {1, . . . , d}, we define the random vector
XA as (Xi)i∈A on a probability space (Ω,A,P) with distribution PXA

.

Definition 4.3 (HSIC measure). Let A ⊂ {1, . . . , d}. Let H be the RKHS of functions of XA in
R with kernel k :=

⊗
i∈A ki, and let F be the RKHS of functions of Y in R with kernel kY . The

Hilbert-Schmidt independence criterion (HSIC) measures the distance between the embeddings of
two distributions : the joint probability distribution P(XA,Y ) of (XA, Y ) and the product of the
marginal probability distributions PXA

and PY and is given by:

HSIC(XA, Y ) = MMD
(
P(XA,Y ),PXA

⊗ PY

)2
=
∥∥µ (P(XA,Y )

)
− µ (PXA

)⊗ µ (PY )
∥∥2
H×F

where µ
(
P(XA,Y )

)
= E [k(XA, ·)kY (Y, ·)] is the kernel mean embedding of the joint distribution, and

µ (PXA
)⊗µ (PY ) = E [k(XA, ·)]E [kY (Y, ·)] is the kernel mean embedding of the product of marginal

distributions.

We can note that, if XA and Y are independent, HSIC(XA, Y ) = 0. Thus, HSIC enables
the identification of input variables (or sets of variables) that influence the output by measuring
dependence. Moreover, HSIC can be calculated for groups of random variables indexed by A, which
is useful for analyzing groups of dependent variables. An illustrated example of the HSIC measure
with RKHS is given in Figure 8. The reproducibility property of RKHS allows us to derive an
expression based exclusively on the expectations of the kernels, as summarized in the following
proposition:
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µX

µY

Y ∼ PY

X ∼ PX

µY := µ(PY ) = E[k(Y, ·)]

µX := µ(PX) = E[k(X, ·)]

∥µX − µY ∥H

RKHS H

1

Figure 8: Illustration of the embedding of two probability distributions in the RKHS in order to
compare them.

Proposition 4.1. Given an i.i.d copy (X ′
A, Y

′) of (XA, Y ) such that E [k(XA, X
′
A)] < +∞ and

E [kY (Y, Y
′)] < +∞, we have :

HSIC(XA, Y ) = E [k(XA, X
′
A)kY (Y, Y

′)] + E [k(XA, X
′
A)]E [kY (Y, Y

′)]

− 2E [E [k(XA, X
′
A) |XA]E [kY (Y, Y

′) |Y ]]

Using this simplified expression for the HSICs, we can easily estimate them using standard
methods such as Monte Carlo. Unbiased (U-statistic) and biased (but asymptotically unbiased, V-
statistic) estimators are introduced in [5, 29]. V-statistics are commonly used. To simplify notation,
we will assume that X := XA.

4.2 Estimation based on crude Monte Carlo

Given two i.i.d samples (Xi, Yi)1≤1≤N and (X ′
i, Y

′
i )1≤1≤N of (X, Y ), a first estimator of HSIC(X, Y )

is given by the following V-statistic :

ĤSICV (X, Y ) =
1

N2

N∑
i,j=1

kX(Xi, X
′
j)kY (Yi, Y

′
j ) +

1

N4

N∑
i,j=1

kX(Xi, X
′
j)

N∑
i,j=1

KY (Yi, Y
′
j )

− 2

N

N∑
i=1

(
1

N

N∑
j=1

kX(Xi, X
′
j)

1

N

N∑
j=1

kY (Yi, Y
′
j )

)

The authors in [5] introduced another estimator which is used in the following to assess crude Monte
Carlo method :

Proposition 4.2.

ĤSIC(X, Y ) =
1

N2
tr (LXHLH) (4)

with

• LX and L are the Gram matrices defined as

LX = (k (Xi, Xj))1≤i,j≤N and L = (kY (Yi, Yj))1≤i,j≤N
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• H =
(
δij − 1

N

)
1≤i,j≤N

where δij is the Kronecker delta.

The main advantage of this formulation is that it requires only one i.i.d. sample of (X, Y ).

4.3 Estimation based on random quantization

As shown in section 3 quantization-based LHS can be used to evaluate expectation while preserving
dependency among a group of inputs. The idea is here to apply these results to the computation of
HSIC. Let’s define the function f such that for all (x, x′) ∈ R2, f(x, x′) = kX(x, x

′)kY (M(x),M(x′)).
Let (Ui)i=1...N a sample provided by Algorithm 3 where Ui ∼ L(X|X ∈ Ci), (Ci)i=1,...,N is the Voronoi
tessellation associated to the quantization of X and pi = P [X ∈ Ci].

ĤSICRQ(X, Y ) =
N∑

i,j=1

pipjf(Ui, Uj) +
N∑

i,j=1

pipjkX (Ui, Uj)
N∑

i,j=1

pipjkY (M (Ui) ,M (Uj))

−2
N∑
i=1

pi

[(
N∑
j=1

pjkX (Ui, Uj)

)(
N∑
j=1

pjkY (M(Ui),M (Uj))

)]
(5)

4.4 HSIC-based independence test

The main interest of HSIC is to identify input parameters that do not affect the output. In order
to obtain a distance in the RKHS, the kernels must be characteristic, i.e. injective. Therefore, the
following equivalence holds for A ⊂ {1, . . . , d}:

XA ⊥⊥ Y ⇐⇒ HSIC(XA, Y ) = 0

HSIC can be used to construct a statistical test of independence based on this result, introduced
by [30]. The null hypothesis H0 : ”XA and Y are independent” is equivalent to HSIC(XA, Y ) = 0.
The statistic corresponding to this test is :

Ŝ = N × ĤSIC(XA, Y )

The p-value represents the probability that, under the null hypothesis H0, the observed value

Ŝobs = N × ĤSIC(XA, Y )obs is greater than Ŝ :

pval = P
[
Ŝ ≥ Ŝobs |H0

]
Hence, H0 is rejected if pval < α, where α is the first order risk of the test, i.e., the risk of falsely
rejecting H0. In practice, Ŝ | H0 distribution is not known. It can be approximated asymptotically
to a gamma distribution (see [30]), which requires a sample size of several hundred. Alternatively,
a test based on permutations and Bootstrap can be used (see [31]).

5 Numerical experiments

In this section, we compare the Quantization-based LHS approach to Monte Carlo and LHSD
on operational environmental models. The first case examines flood risk, where there is perfect
knowledge of the dependency structure and the characteristics of the marginal laws. The second
case studies the sizing of a grass strip in an agricultural context, where dependencies are unknown.
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5.1 Case study I: sampling for a 1D hydro-dynamical model of flood
risk

In this first real application, we simulate the risk of a site being flooded by a river. The study
concerns an industrial site near a river, protected by a dyke. The objective is to analyze the water
level relative to the dyke height to prevent flooding. The model, which is a crude simplification of
the 1-D Saint-Venant equations assuming uniform and constant flow rate, is defined as follows:

S = Zv +H −Hd − Cb

H =

 Q

BKs

√
Zm−Zv

L

0.6

Here, S represents the maximal overflow [m], and H is the water height [m]. The model depends
on eight random variables (Q,Ks, Zv, Zm, Hd, Cb, L,B), which are summarized in Table 1. Hd is a
design parameter, while the randomness of other inputs arises from their spatio-temporal variability
or estimation inaccuracies. More details on this model can be found in [32, 33].

Input Description Unit Probability Distribution

Q Maximum annual flow rate m3s−1 Truncated Gumbel G(1013, 558) over [500, 3000]
Ks Strickler coefficient m3s−1 Truncated Normal N (30, 8) over [15,∞)
Zv Downstream river level m Triangular T (49, 50, 51)
Zm Upstream river level m Triangular T (54, 55, 56)
Hd Height of the dike m Uniform U([7, 9])
Cb Bank level m Triangular T (55, 55.5, 56)
L Length of the river section m Triangular T (4990, 5000, 5010)
B Width of the river m Triangular T (295, 300, 305)

Table 1: Description of the model inputs.

The eight inputs of the flood problem are dependent, and a Gaussian copula is proposed for the
joint distribution:

C(u1, . . . , ud) = Φjoint

(
Φ−1(u1), . . . ,Φ

−1(ud)
)

where, Φjoint is the cumulative distribution function of the multivariate Gaussian distribution with
covariance matrix Σ, and Φ, the cumulative distribution function of the standard normal distri-
bution. In the case of the flood, dependency only exists pairwise, with the following correlation
coefficients: ρ(Q,Ks) = 0.5, ρ(Zv, Zm) = ρ(L,B) = 0.3 [33].

This study compares the results obtained with LHSD and QLHS to investigate stratified random
sampling for dependent inputs with a well-known dependence structure. The results show that both
LHSD and QLHS offer better performance than Monte Carlo, although µQLHS has a higher variance
than LHSD (Figure 9). This was expected given that LHSD possesses analytical knowledge of the
copula and the c.d.f and inverse c.d.f of the marginals. Moreover, LHSD is based on LHS and
therefore inherits its properties, i.e. the more additive the function f is in the d components of X,
the greater the variance reduction [13]. Since the S function is nearly additive (the sum of Sobol’s
first-order indices is ≈ 0.993, [34]), it can be expected that LHSD will perform better than QLHS,
which lacks such properties. In environmental modeling, however, the inputs must be measured
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Figure 9: Estimation of E[S] with 500 repetitions per sample size N ∈ {10, 20, 50, 100}. The true
value (red dotted line) is obtained using a Monte Carlo estimate with 108 points.

on the field or come from empirical relationships, for example. In most cases, information on the
dependency structure between inputs may be completely unknown, or limited, for example coming
from a random generator. In that case, the quantization-based LHS design proposed in section 3.1
is particularly adapted since it only requires the application of k-means over a large sample size. In
the next section, these sampling strategies are implemented and compared on a digital twin of an
agricultural catchment, without any analytical knowledge of dependency.

5.2 Case study II : sampling of Soil water retention for pesticide trans-
fer modeling

5.2.1 Model and data description

In order to reduce the river’s pollution in agricultural catchments, some best management practices
consist in applying vegetative filter strips (VFSs) that reduce significantly surface runoff and erosion
from the cultivated fields [35, 36]. These nature-based solutions must be designed optimally to be
efficient and socially accepted, considering the local conditions of soil, climate, topography, and
cultural practices. To that aim, [37, 38] developed the decision-making tool BUVARD MES for
french farmers or stakeholders in the water quality domain, based on the benchmark numerical
model VFSMOD [39, 40, 41] (see figure 10). In this study case, BUVARD MES is extended on the
digital twin of the Morcille catchment (Figure 11), a vineyard agricultural place in the Beaujolais
region (France), where water, sediment and pesticide are intensively measured for more than 30
years [18]. This digital twin, deeply tested and described in [42], allows simulating transfers in
fields and VFSs in all possible places of the catchment, thus running on a large sample of inputs.

5.2.2 Soil water retention estimation

In the model, infiltration in presence of a water table is represented by the SWINGO algorithm
[43], which depends on Van Genuchten soil hydraulic functions (VG, [8] , eq. 6).

θ(h) = θr +
θs − θr

(1 + (α|h|)n)1−1/n
(6)
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Figure 10: BUVARD MES model and its sub-models, with inputs for climate, soil, vegetation
properties of the fields and VFSs. The group of (Van Genuchten) dependent parameters is indicated
by a brace.
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Figure 11: The Morcille catchment (left and bottom) and its digital twin, in the Beaujolais vineyard
region (France). Example of surface properties extracted from the virtual catchment (top).
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where θs is the saturated water content, θr is the residual water content, α is linked to the inverse
of the air entry suction and n is related to the pore-size distribution.
This conductivity is described by:

Kv(h) = Ksat

√
S(h)

(
1−

(
1− S(h)

1
1−1/n

)1−1/n
)2

(7)

where Ksat is the hydraulic conductivity at saturation and :

S(h) =
θ(h)− θr
θs − θr

Dependencies between the soil properties in the VG equations are known to exist, but their
structure is not explicitly known, despite many studies. For example, [44] constraints the sampling
by simultaneously estimating soil water characteristics and capillary length with pedotransfer func-
tions, and [45] estimates a stochastic relation between some of the VG parameters on some specific
soils. In order to account for this unknown information, two properties are considered to describe
the inputs in BUVARD MES for the sampling: the first set of inputs consider them as independent
and thus random, and the second set is made of dependent variables (the Van Genuchten set, 5 pa-
rameters). For this set, a random generator was used on the data to generate the joint distribution.

Figure 12 illustrates θ(h) curves with RQ (Algorithm 3) and LHS sampling, clearly showing
the values of θr (minimum water content) and θs (maximum water content), which correspond to
physical values and exhibit a trend consistent with reality. The LHS curves, however, are not in
agreement with observed physical behavior.
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Figure 12: Water retention curves θ(h) for different Van Genuchten parameters samples based on
Random Quantization (left) and LHS (right).

For the LHSD case, a Gaussian copula was fitted using maximum likelihood. As we do not
have access to the quantile and cumulative distribution functions, we used their empirical versions.
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Results given in Figure 13 show that the RQ estimator is unbiased with lower variance than Monte
Carlo and LHSD. This confirms the relevance of this method based on quantization, considering
the simplicity of implementing this approach compared to LHSD. Indeed, it only requires a simple
k-means, while LHSD requires estimating a good copula and distribution function estimates, which
can be a time-consuming process. Figure 14 shows another illustration on the conductivity curve.
Despite the difficulty of the problem, which lies in the small value to be estimated, all three methods
provide satisfactory results. µRQ outperforms both LHSD and Monte Carlo by providing a lower
variance unbiased estimate.

5.2.3 Sensitivity analysis with HSIC

To reduce the complexity of the BUVARD-MES model, which is time-consuming to compute, it
is necessary to reduce the dimensions in order to keep only those that influence the output. To
address this issue, HSIC independence tests are performed as described in section 4. The group of
dependent variables is considered as a single input, referred to as Van Genuchten. For LHSD, the
same parameterization as in the previous example is maintained.

In practice, the analysis included 10 uncorrelated inputs that described the geometric properties
of the contributing surface (CA) and the VFS (Area, Length, Slope, Curve Number of the field ;
Slope, Width, Organic Matter, Clay content and Water table depth of the VFS ; and the pesticide
property Koc, see Table 2), as well as properties related to pesticides and organic matter. Addi-
tionally, the group of 5 correlated Van Genuchten inputs were used to describe soil conductivity
and water retention capacity.

The independent inputs are associated with a univariate Radial Basis Function (RBF) kernel,
while the dependent group is associated with an adapted RBF kernel. To ensure consistency in the
parameterization of this kernel, data were standardized, as the use of a standard deviation for the
whole group is restrictive due to the 5 variables having a very variable order of magnitude (ranging
from 10−5 to 101). As the output is scalar, a univariate RBF is used. If the p-value is less than 5%,
H0 is rejected. Otherwise, H0 is accepted, i.e. the considered input is independent of the output.

∀(x, x′) ∈ R2, kindep(x, x
′) = exp

(
−(x− x′)2

2θ2

)
, θ ∈ R

∀(x, x′) ∈
(
Rd
)2

, kdep(x, x
′) = exp

(
−∥x− x′∥2

2θ2

)
, θ ∈ R

The results of this independence test are summarized in Table 2. The reference values have
been obtained by an asymptotic test using a gamma distribution and a Monte Carlo draw of 10,000
points. For other methods (QLHS, MC, LHSD), p-values are obtained by bootstrap [31]. The
results between the reference and the proposed QLHS method are in agreement despite the small
sample size. Furthermore, by using either the LHSD or Monte Carlo approach (with 400 points), we
can accept the hypothesis that Van Genuchten is independent of runoff efficiency. This contradicts
the reference and ’expert’ knowledge.

6 Conclusion

This article proposes a new design of computer experiment, called QLHS, which naturally incor-
porates dependency. It is based on vector quantization, specifically k-means, ensuring ease of
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Input
p-value Decision

Ref MC QLHS LHSD Ref MC QLHS LHSD

Area CA 0 0 0 0 ✓ ✓ ✓ ✓

Length CA 0.38 0.40 0.86 0.75 ✗ ✗ ✗ ✗

Width CA 0 0 0 0 ✓ ✓ ✓ ✓

Slope CA 0.54 0.032 0.33 0.87 ✗ ✓ ✗ ✗

Slope VFS 0 0.012 0.0018 0.0004 ✓ ✓ ✓ ✓

Width VFS 0 0 0 0 ✓ ✓ ✓ ✓

OM VFS 0.27 0.81 0.87 0.23 ✗ ✗ ✗ ✗

WTD VFS 0 0 0 0 ✓ ✓ ✓ ✓

C VFS 0.87 0.09 0.29 0.85 ✗ ✗ ✗ ✗

Koc 0.38 0.09 0.67 0.89 ✗ ✗ ✗ ✗

CN CA 0 0 0 0 ✓ ✓ ✓ ✓

Van Genuchten 0 0.18 0.031 0.096 ✓ ✗ ✓ ✗

Table 2: HSIC independence test on BUVARD-MES with 400 points per sample method. ’CA’
stands for the contributive area of the VFS (the field), ’VFS’ stands for vegetative filter strip.
WTD is Water Table depth, C is clay content, Koc is the pesticide soil adsorption coefficient, CN
is the Curve Number. The HSIC for MC and LHSD were computed with Equation 4. For QLHS,
with Equation 5. ✓ : The output is dependent of the input. ✗ : The output is independent of the
input.

implementation while considering groups of dependent inputs. The sampling strategy is built in an
LHS way, ensuring comprehensive coverage of each marginal including groups of dependent inputs,
and requires few evaluations. It allows for unbiased estimation of expectations in various configura-
tions. The methodology has been applied to several case studies, including HSIC kernel sensitivity
analysis. We show that the use of QLHS allows for high-performance sensitivity analysis with a
smaller sample size compared to existing sampling approaches.

Consequently, on the basis of this methodology, and while ensuring that the dependency struc-
ture of the inputs is taken into account, a screening step can be carried out that allows the input
dimension to be reduced in order to limit the calls to the computational code and to build an
accurate metamodel.
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[45] C. M. Regalado and R. Muñoz-Carpena. “Estimating the saturated hydraulic conductivity in
a spatially variable soil with different permeameters: a stochastic Kozeny–Carman relation”.
In: Soil and Tillage Research 77.2 (2004), pp. 189–202. issn: 0167-1987. doi: 10.1016/j.
still.2003.12.008.

A Proofs

A.1 Proof of Proposition 3.1

Proposition 3.1. µRQ is an unbiased estimator of m, and its variance is given by :

Var (µRQ) =
N∑
i=1

P[X ∈ Ci]
2Var (f(Ui))

Proof. For the bias :

E[f(X)] =
N∑
i=1

E [1X∈Ci
f(X)]

=
N∑
i=1

P[X ∈ Ci]E [f(X) |X ∈ Ci]

=
N∑
i=1

P[X ∈ Ci]E [f(Ui)]

= E [µRQ]

For the variance :

Var (µRQ) =
N∑
i=1

P[X ∈ Ci]
2Var (f(Ui)) + 2

∑
1≤i<j≤N

P[X ∈ Ci]P[X ∈ Cj]Cov (f(Ui), f(Uj))

=
N∑
i=1

P[X ∈ Ci]
2Var (f(Ui))

A.2 Proof of Proposition 3.2

Proposition 3.2. µQLHS is an unbiased estimator of m.

Proof. In the following, for i = 1, . . . , N , we define pi := P[X ∈ Ci]. For N ∈ N∗, we denote by SN
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the permutation group of order N !.

E[µQLHS] =
N∑
i=1

piE
[
f(Ui, Vπ(i))

]
=

N∑
i=1

piE
[
E
[
f(Ui, Vπ(i))

]
|π
]

=
N∑
i=1

pi
∑
a∈SN

P[π = a]E
[
f(Ui, Vπ(i)) | π = a

]
=

N∑
i=1

pi
∑
a∈SN

1

N !
E
[
f(Ui, Va(i))

]
=

N∑
i=1

N∑
j=1

∑
a∈SN
a(i)=j

1

N !
piE [f(Ui, Vj)]

=
N∑
i=1

N∑
j=1

(N − 1)!

N !
piE [f(Ui, Vj)]

=
N(N − 1)!

N !

N∑
i=1

N∑
j=1

1

N
piE[f(Ui, Vj)]

= E [f(X, Y )]

Because {a ∈ SN | a(i) = j} ∼= SN−1. Hence, Card ({a ∈ SN | a(i) = j}) = (N − 1)!.

B Soil water retention estimation
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Figure 13: Comparison of RQ, Monte Carlo, and LHSD on the Water content for h = 1m for sample
sizes N ∈ {10, 20, 50, 100}, with 500 replicates per sample size. The LHSD was modelled using a
Gaussian copula and estimated through maximum likelihood and empirical quantile function.
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Figure 14: Comparison of RQ, Monte Carlo, and LHSD on the conductivity curve estimation for
h = 10−3 was conducted using sample sizes N ∈ {10, 20, 50, 100}, with 500 replicates per sample
size. The LHSD was modelled using a Gaussian copula and estimated through maximum likelihood
and empirical quantile function.
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