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Abstract

The purpose of this study is to develop a numerical strategy able to compute and predict the flow-induced
orientation of the fibers within an hydrogel during extrusion-based 3D printing process. The probability
distribution function approach was used to describe the orientation of a fiber population. This approach
was coupled to a computational fluid dynamic (CFD) method to compute the fluid flow which transports
the fibers. Numerical computations were performed for a planar channel and a conical nozzle geometry.
The results showed that the fiber orientation during the extrusion process is delayed by the hydrogel
rheological behavior while the final fiber orientation remains the same. This study presents the first
analysis for the fiber orientation prediction in hydrogel for extrusion-base 3D printing.

Keywords: 3D printing, Extrusion, Fiber orientation, Rheology, Probability
distribution function.

1 Introduction
Extrusion-based 3D printing is an additive manufacturing technique to produce cellularized scaffolds for
personalized tissue-engineering applications [1]. The extrusion process has a strong impact on the final
mechanical behavior as well on the oriented engineered tissue [2]. Cellularized scaffolds are usually
made from hydrogel [3,4] which can be reinforced by rigid fibers such as cellulose or carbon nanofibers
[2, 5–8]. Therefore, the overall aim of this work is to develop a numerical model able to compute and
predict the flow-induced orientation of rigid fibers within an hydrogel. As a first step, an acellularized
hydrogel was investigated.
At a given space position, several approaches have been used to represent the fiber orientation state [9].
One possible representation of the fiber orientation state is to use the second order orientation tensor
introduced by Advani and Tucker [10]. The equation describing the rate of change of this tensor involves
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a fourth order orientation tensor. When derived, a sixth order orientation tensor appears which leads to an
infinite serie of evolution equations [9] and therefore requires a supplement linear or quadratic equation
called a closure approximation to close the problem. This raises the problem of choosing an accurate
closure approximation to prevent the loss of physical properties in the orientation tensor describing the
physical state of the fibers. Another possibility is to use the probability distribution function (PDF),
which is the most general description of fiber orientation state. PDF is defined, such that ψ(−→x ,−→p , t)
represents the probability to find at the position −→x a fiber at an orientation −→p at a given time t. The
continuity condition describes the change of rate of ψ with respect to time when fiber orientation is
changing:

Dψ

Dt
= − ∂

∂−→p
.(ψ−̇→p ) (1)

Where D/Dt represents the material derivative, −̇→p is the motion of a fiber. The direct calculation
enabled by the use of the PDF approach was chosen to predict the fiber orientation in this work. The
fibers were assumed as rigid cylinders and considered distributed spatially homogeneous in the computed
domain. Furthermore, we focused on a 2D problem reducing to two spatial variables (x, y) related to
the spatial position of the center of the fiber, and to one angle variable (θ) related to the fiber orientation
distribution. The paper is organized as follows: firstly, a mathematical modeling was used to solve the
equation 1 for ψ, later called the Fokker-Planck equation, in a fluid flow problem using the Navier-
Stokes equations. Then, fiber orientation was analysed with respect to the rheological behavior of the
fluid (representing the hydrogel) and two different geometries were compared. Finally, conclusions and
perspectives are discussed.

2 Mathematical modeling

2.1 Fiber orientation distribution model
A single and rigid fiber is usually given by the unit vector −→p directed along its principal axis (see
Figure1(A)). In the 2D case the orientation of each fiber can be expressed as:

−→p =

(
sin θ

cos θ

)

Jeffery [11] developed the first description of the motion of a single fiber as shown in the first two terms
of the right hand-side of equation (2):

−̇→p = W.−→p + λ[D.−→p − D : (−→p ⊗−→p )−→p ]− Dr

ψ

∂ψ

∂−→p
(2)

where−→u is the fluid velocity, W =
1

2

[
(▽−→u )− (▽−→u )T

]
is the vorticity tensor, D =

1

2

[
(▽−→u ) + (▽−→u )T

]
is the deformation rate tensor. The particle shape function λ = (r2e − 1)/r2e + 1) related to the aspect
ratio of the fiber re = L/D where L and D being its length and diameter, respectively. The last term
in the right-hand side of equation (2) was introduced by Folgar and Tucker [12] to take into account
fiber interaction to predict the orientation in semi-dilute and concentrated solutions where Dr = CI γ̇,
γ̇ =

√
2D : D denotes the scalar magnitude of the rate of the strain tensor and CI describes the inter-

action coefficient. Combining the continuity equation (1) for the PDF with the equation (2) it produces
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Figure 1: (A) Schematic of a unit vector −→p , (B) Schematic of the discretized control volume in the
FVM. P, E and W represent the nodal point , the faces in east and west, respectively.

the rate of change with time for ψ as:

Dψ

Dt
= − ∂

∂−→p
.(ψ−̇→p ) +Dr ▽2

p ψ (3)

Where D/Dt = ∂ψ/∂t+−→u .∇xψ, −→u is the fluid velocity obtained from the Navier-Stokes equations,
▽2

p refers to ∂2/∂−→p 2. Equation (3) is known as the Fokker-Planck (FP) equation and needs to be solved
to find the orientation of a fiber population at a given spatial position. However, equation 3 is multi-
dimensional due to the dependence of ψ(−→x ,−→p , t) on the spatial and angle variable −→p (θ). Therefore,
in this work a numerical strategy was proposed to deal with this problem using Comsol-Multiphysics
(v5.6) with two discretization steps [13] [14] : (i) First, a discretization of the FP equation based on Fi-
nite Volume Method (FVM) in the angle domain −→p (θ). Figure 1(B) illustrates the basic control volume
on which we carried out the discretization of the FP equation. At this stage, a system of equation at a
general point P and its neighbors W and E was formed as following:

δθ.−→u .∇xψP + aPψP − aWψW − aEψE = 0 (4)

The expressions for coefficients aP , aW , aE at each node of the FVM mesh are detailed in the work of
Mezi et al., [14]. (ii) Then, the FP equation (equation (4)) obtained from the previous step is discretized
and implemented into the partial differential equation (PDE) interface in Comsol-Multiphysics. The
PDE equation type used is identical to the convection-diffusion problem. This strategy enables the
resolution of an equations system discretized with FVM coupled to the finite element resolution of a
fluid problem in the spatial domain. In this work a 2D stationary resolution is assumed as a first approach
in order to reduce variables in both spatial and angle domains. Moreover, we did not considered any
interaction between the fibers leading to fix the dimensionless parameter CI = 10−2 [14]. Finally, the
fibers are considered as rigid cylinders, thus thickness can be ignored leading to λ = 1.

2.2 Flow field equations
The hydrogel was modeled using two type of rheological behaviors for the fluid flow. As a first approx-
imation and to test of the flow-induced fiber orientation, we assume a Newtonian and incompressible
fluid [15], with a viscosity µ = 0.1Pa.s and a density ρ = 850kg/m3.

Then, we considered a non-Newtonian fluid consisting of three main components: Fibrinogen, Alginate
and Gelatin (FAG) described by Pourchet et al., [16]. The rheological characterization of the FAG was
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performed on a rotational rheometer (DHR2, TA instruments, USA) with the protocol described in [17].
The results (not presented in this article) shows that a Herschel-Bulkley model is suitable:

τ = τ0 + kγ̇n (5)

where τ is the shear stress [Pa], τ0 the static yield stress [Pa], k the consistency index [Pa.s], γ̇ the shear
rate [s] and n the flow index [-]. If τ < τ0 the Herschel-Bulkley fluid behaves as a rigid (non-deformable)
solid, otherwise it behaves as a fluid. Rheological parameters were determined by a numerical least
square minimization using a Levenberg-Marquardt nonlinear regression algorithm giving: τ0 = 113.96

[Pa], k = 195.36 [Pa.s] and n = 0.43.

In order to characterize the flow regime, the Reynolds number (Re) was determined which correlates
the inertia forces to the viscous forces and can be defined as:

Re =
ρV l

µ
(6)

where ρ is the density of the fluid [kg/m3], V the average velocity [m/s] , l the characteristic length
[m] and µ the dynamic viscosity of the fluid [Pa.s]. The results obtained from calculating the Reynolds
number for both fluids flow (Newtonian and Herschel-Bulkley) are low, typically in the range of [0.0051
- 102] showing that the flows are considered to be laminar (also known as viscous flow).
The Bingham number (Bm), a dimensionless number used in rheology to characterize the relationship
between the yield stress and the viscous stress was calculated for the Herschel-Bulkley fluid case:

Bm =
τ0l

µV
(7)

where τ0 is the static yield stress [Pa], l the characteristic length [m], V the average velocity [m/s], and
µ the dynamic viscosity of the fluid [Pa.s]. The results of Bm are very small, in the range of [0.00077-
0.62].
The equation (4) is a typical convection-diffusion system where the convection dominates the fluid flow
regime leading to numerical instabilities. An artificial diffusion coefficientDnum can be added to stabi-
lize the numerical convergence. In this case, the Péclet number (Pe) enables the estimation of convection
versus diffusion regime was calculated as:

Pe =
V l

Dnum
(8)

where V is the average velocity [m/s], l the characteristic length [m] and Dnum the artificial diffusion
coefficient [m2/s]. In this study, we did not consider any effect of the Dnum on the numerical model,
setting Dnum = 10E-5 [14], therefore Pe = [9.6-120].

2.3 Geometrical models and boundary conditions
Two geometries are presented in this study. An axisymmetric planar channel and a 2D conical nozzle as
depicted in Figure 2 with their respective boundary conditions (BC). The planar channel is a rectangle
of 4x2 mm2. The conical nozzle has a length of 30 mm and an inner diameter of 200 µm (Optimum®,
Nordson EFD, USA). Regarding the planar channel the symmetry around the x-direction, only half of the
rectangle was considered using axisymmetric modeling to reduce the computation time. At the exit of the
planar channel (BC3) and the conical nozzle (BC3’) a normal flow was imposed to suppress back flow.
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The constant flow rate of 5µl/s (BC3) was defined to be compatible with bioprinting conditions [18].
The domain was discretized with 3323 triangles elements for the planar channel and 7777 triangles
elements for conical nozzle. Finally, all fibers were assumed to be isotropic at the inlet (BC1 and BC1’)
leading to impose at a boundary condition of ψ = 1/π in the Fokker-Planck equation [14].

Figure 2: Boundary conditions : (A) Axisymmetric planar channel geometry - BC1: Pin = 600 Pa,
ψ = 1/π; BC2: zero-slip; BC3: Pout = 0 Pa; BC4: symmetric condition. (B) 2D Conical nozzle
geometry - BC1’: Vin = 5 µl/s, ψ = 1/π; BC2’: zero-slip; BC3’: Pout = 0 Pa; BC4’: zero-slip. Non
dimensional numbers : (A) Re = [0.06-102], Bm = 0.00077, Pe = 120. (B) Re = [0.0051-8.16], Bm =
0.62, Pe = 9.6.

3 Results and discussion

3.1 Planar channel axisymmetric poiseuille flow
Firstly, a case study consisting of 2D extrusion in a planar channel for Newtonian and Herschel-Bulkley
behaviors was considered. The flow was a poiseuille type, one of the most basic flow we choose to
investigate the fiber orientation [14]. The effective deformation distribution over the calculated domain
is depicted in Figure 3 for these two behaviors. The white ellipses (Newtonian case) and the magenta
ellipses (Herschel-Bulkley case) were formed from the eigenvalues and eigenvectors directly calculated
from the PDF results as: ⟨−→p −→p ⟩ =

∫
p pipjψdp, i, j = 1, n to represent the average fiber orientation,

where n = 30 represents the discretization in the FVM. For both rheological behaviors, the ellipses
initially circular, becomes gradually elongated along their major axes showing fibers alignment in the
direction of the flow. Furthermore, near the wall where the shear rate is the highest, the ellipses are
flattened which means that the fibers are more quickly oriented.

Figure 3: Shear rate distribution of fluid domain. (A) Newtonian; (B) Herschel-Bulkley. The white
ellipses represent the average fiber orientation.
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Figure 4: PDF curves compared for Newtonian and Herschel-Bulkley. (A) Comparison of PDF at two
points (black circle and red star represented in Figure 3); (B) PDF along an horizontal streamline passing
at the "red star" point (y = 0.2 mm).

In Figure 4(A) the PDF at the outlet of the channel for two points (black circle [x=4;y=1] and red star
[x=4;y=0.2]) are depicted. The exact same distributions are observed for Newtonian and Herschel-
Bulkley behavior.

The case study on an axisymmetric planar channel with poiseuille flow shows that the fluid rheological
behavior does not affect the fiber orientation at the outlet of the channel. Most of the fibers have an
orientation angle of π/2 meaning that they are aligned with the direction of the flow. However, the
results in Figure 4(B) show that the rheological behavior affects the characteristic geometrical length
along the streamline at which the orientation’s steady state is reached. Indeed for a Newtonian behavior
the fibers align along the streamline in a very little characteristic length (at x = 1.2 mm) compared to
Herschel-Bulkley (at x = 3.6 mm).

3.2 Ink flow through conical nozzle
Secondly, we reproduced a bioprinting process using the same extrusion conditions as Lemarié et al.,
[17] in order to predict fiber orientation induced by the flow through a conical nozzle. An Herschel-
Bulkley rheological behavior was chosen for this case because its rheological properties provide a dual
capacity, playing an important role in bioprinting, printability (shear thinning) and shape fidelity (yield
stress). [19]

At the inlet, an isotropic orientation of the fibers (ψ = 1/π) as a boundary condition was set. The
results in Figure 5(A) show the ellipses initially circular and becoming gradually elongated along their
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Figure 5: (A) Shear rate distribution and ellipses representing the average fiber orientation; (B) PDF’s
curves at outlet of the nozzle along the line A’B’.

major axes showing fibers alignment in the direction of the flow. The magnification of the outlet of the
noozle in Figure 5(A) shows that along the x-axis at y = 0 (center-line of the nozzle), the fibers do
not have a privileged orientation in contrast with the planar channel illustrated in Figure 4 and Figure
3 for both Newtonian and Herschel-Bulkley rheological behaviors. This result is depicted in Figure
5(B) by the pink triangle curve where the mean value of the orientation angle for the conical noozle is
θ = 1.57± 1.62 rad compared to θ = 1.67± 1.35 rad for the panar channel. However, in the upper part
between the wall and the center-line we notice a gradual orientation of the fibers leading to θ = 1.3 rad
at the upper part wall. Whereas, in the lower part the orientation angle reaches θ = 1.8 rad at the upper
part wall. This illustrates a symmetry of the orientation around the center-line of the nozzle driven by
the shear rate.

4 Conclusion
In this work, a numerical strategy was implemented in to resolve the coupled problems of fiber motion
and fluid flow in extrusion-based printing to predict the fiber orientation. It is based on a finite ele-
ment discretization of the flow coupled to a hybrid finite element – finite volume discretization of the
Fokker-Planck equation. The examples proposed have shown that the model can be used to compute the
evolution and the final orientation of the rigid fibers in respect to the fluid rheological behavior and the
geometry of the extrusion process. The model allows us to measure the alignment of any non-relaxing
component along the axial direction of the extrusion. To validate the model several steps are planned.
Experimental data will be acquired to compare the orientation of the fibers at the output of the nozzle in
respect to the rheological behaviors. Also, the numerical simulation will be extended in 3D to consider
the accuracy of the model. Finally, interaction between the fibers will be considered.
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