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Chapter 1
Covering a surface with pre-stressed ribbons:
from theory to nano-structures fabrication

Alexandre Danescu, Philippe Regreny, Pierre Cremillieu, Jean-Louis Leclercq, and
Ioan R. Ionescu

Abstract The paper deals with the fabrication of nano-shells from pre-stressed
nano-plates release. Due to geometrical and technological restrictions we have to
cover a given surface with three-dimensional thin ribbons. We discuss the key role of
the geodesic curvature in the design of such shell-ribbons. We show that including
small-strains but large rotations we are able to control the metric tensor of both
Lagrangian and Eulerian ribbons by an appropriate choice of the width and thickness
of the ribbons. Moreover, the Green-Lagrange strain tensor is controlled by the
distance between the curvature of the planar ribbon and the geodesic curvature of
the supporting curve of the shell-ribbon. Under suitable constitutive assumptions, we
deduce the field equations, the boundary conditions and the design equations. The
former relate the pre-stress in the planar layer to the final geometry of the desired
shell-ribbon. A fine tuning of the composition, geometry and of the pre-stress of
the plate-ribon is necessary to design and fabricate the shell-ribbon. We design and
fabricate a partial cover of the sphere with constant latitude ribbons starting from
planar multi-layer semiconductor materials grown by molecular beam epitaxy. The
details of fabrication method and its limitations are discussed in detail.
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1.1 Introduction

Nowadays the fabrication processes in semiconductor industry use essentially the
planar technology and among the various methods of crystal growth, the molecular
beam epitaxy (MBE) presents the significant advantage of highly accurate control
of composition (up to 1%) and thickness (up to monolayer). Composition control
endowmulti-layered planar structures with pre-stress which may be beneficial for the
design on 3D objects by pre-stress relaxation. The prototype of this phenomena is the
bi-layer material where the presence of the pre-stress in one of the layers induced the
bending of the free bi-layer structure. Initiated in Prinz et al (2000) (see also Prinz
et al (2001), Prinz (2003), Seleznev et al (2003), Prinz and Golod (2006), Prinz et al
(2017)) for simple rolls, curls and developable ribbons the method was extended
to cover more complex situations in Danescu et al (2013), Danescu et al (2018).
Introduced by an heuristic method in Danescu et al (2013) and later reconsidered in
the framework of small-strains and large-rotations in Danescu and Ionescu (2021),
the geodesic curvature represents the key concept for the design of 3D structures
from planar pre-stresses films. From a different point of view, the equilibirum shape
of a pre-stressed material was investigated by using dimension reduction in Le Dret
and Raoult (1995); Friesecke et al (2002a,b, 2006); de Benito Delgado and Schmidt
(2020); Wang et al (2019); de Benito Delgado, Miguel and Schmidt, Bernd (2021)
leading to a hierarchy of non-linear elastic models Lewicka and Raoult (2018).

These previous results concerning relaxation of pre-stressed bi-layer materials
focus on straight ribbons that relax toward rolls and curls, all based on isometric
transformations. However, it is well-known that the class of isometries between
planar and three-dimensional surfaces, extensively studied in Fosdick and Fried
(2016), is too narrow to cover simple non-developable surfaces occurring in pre-
stressed relaxation design problems. To circumvent this theoretical drawback, in a
recent paper Danescu and Ionescu (2020) we developed a shell design model built
on a non-isometric perturbation assumption of Love-Kirchhoff type superposed on
a plate-to-shell theory. Extending shell models in Steigmann (2013), Ciarlet and
Mardare (2018), Steigmann (2007b), Steigmann (2007a), Steigmann and Ogden
(2014)) the geometric description involves a single small parameter δ � 1, the
product between the thickness of the shell and its curvature.

The main difficulty in applying the shell-design model in Danescu and Ionescu
(2020) is of a geometric nature. Indeed, for several common mid-surfaces the small-
strain assumption drastically reduces the surface width. However, since we are fo-
cusing on brittle-elastic materials (such as semiconductors), the small deformations
assumption is merely a technological restriction and not a mathematical simplifi-
cation. To encompass this limitation, in Danescu and Ionescu (2021) another type
of shell, (called a strip-shell) is constructed, for which this assumption can be ful-
filled by an appropriate choice of an additional geometric parameter, namely the
strip width. In this restricted framework, if the product between the strip-shell width
and its curvature is of order δ1/2 the assumptions of plate-to-shell theory Danescu
and Ionescu (2020) are fulfilled so that, for any strip of a given shell we provide a
simple model able to design the corresponding plate-strip (i.e., to compute the shape



1 Covering nano-structures with pre-stressed ribbons 3

and pre-stress momentum of the plate). The next step analysed here is to cover the
given surface (shell) with one or several strips, situation in which we can provide an
explicit design of the corresponding planar (plate) strips.

The paper is organized as follows : the first two sections recall the geometric
and mechanical assumptions of the plate to shell model for design proposed in
Danescu and Ionescu (2020). We relate the geometric aspects to the pre-stress via
constitutive relations and field equations in finite strains through the assumption of
weak-transversal heterogeneity, assumption fulfilled here by the weak variation of
the composition in our crystal growth process. The third section discuss the main
geometric aspects of the theory (see Danescu and Ionescu (2021) for more details),
with a particular accent on the metric tensors for planar ribbons along curves and
three dimensional ribbons as subsets of arbitrary surfaces in R3. The main result
shows that the distance between the curvature of the planar curve (the planar design)
and the geodesic curvature of the three dimensional supporting curve of the ribbon
controls theGreen-Lagrange strain tensor, so that the small-strain (but large rotations)
assumptions can be fulfilled by an appropriate choice of the planar geometry. The
fourth section descibes a specific application: fabrication of a partial cover of the
sphere from a planar pre-stressed bilayer material by using a design based on the
geodesic curvature of constant-lattitude circles.

1.2 Geometric and kinematical settings

Let us consider a plate with mid-surface R0 ⊂ R2 and thickness H = H(X̄) in the
Lagrangian configuration (here X̄ = (X1, X2)) and let S0 ⊂ R3 be the mid-surface
of an Eulerian shell of thickness h, with e3 the unit normal and K the curvature
tensor acting from the tangent plane into itself.

In what follows, δ � 1 will be a small parameter characterizing the Eulerian and
Lagrangian shell thickness and such that :

h|K| = O(δ), H/Lc = O(δ), |∇2H| = O(δ), (1.1)

where Lc is the characteristic length of the surface and ∇2 is the gradient with
respect to X̄ ∈ R0.

Themain geometric assumption in Danescu and Ionescu (2020) is that there exists
a transformation x : R0 → S0 of the Lagrangian mid-surface R0 into the designed
Eulerian oneS0 such that the associated deformation of the geometric transformation
is small, i.e.,

|E2| =
1

2
|∇T2 x∇2x− I2| = O(δ). (1.2)

Here I2 = c1 ⊗ c1 + c2 ⊗ c2 is the identity tensor on R2 and {c1, c2, c3} is
the Cartesian basis in the Lagrangian description and herafter we denote by K =
∇T2 xK∇2x the Lagrangian curvature tensor acting from R2 into itself.
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The kinematics of the plate deformation considered in Danescu and Ionescu
(2020) involves the classical Love-Kirchhoff assumption, i.e.: the normal to the plate
mid-plane remains normal to the designed mid-surface but in a finite deformation
context and thus including large rotations. In addition, the transversal deformation
is affine with respect to the plate thickness. Superposed to the kinematics associated
to the exact design which reproduces the target mid-surface, we consider a small
perturbation of Love-Kirchhoff type in order to compensate the small (membrane)
deformation of the proposed geometric transformation. As a consequence, the mid-
surface of this overall kinematics will be close to the designed mid-surface, and for
this reason we called it approximate design kinematics.

1.3 Weak transversal homogenenity and the moment equations

Although, the general theory developed in Danescu and Ionescu (2020) can cover
the general anisotropic framework, here we restrict to cubic materials since our de-
signed experiment involve multilayered cubic III-V semiconductor alloy In1−αGaαP
for α small. In order to account for small-strains but large rotations including inho-
mogeneous pre-stress we consider a linear constitutive relation between the second
Piola-Kirchhoff stress S tensor and the Green strain-tensor E = 1

2 (FTF− I) in the
form

S = C(X3)[E] + S?(X3) +ΣO(δ2), (1.3)

whereΣ is a characteristic stress and both the material parametersC = (Cij) (Voigt
notation) and the pre-stress S? depends on the normal coordinate in the reference
configuration. Morover, following Danescu and Ionescu (2021) we assume that the
elasticities C obey the weak transversal heterogeneity condition, i.e.,

〈Cij〉2 = ΣO(δ), 〈Cij〉3 =
1

12
〈Cij〉1 +ΣO(δ), (1.4)

where the successive averages (moments) of a X3-dependent function 〈f〉n (n =
1, 2, 3) are defined through

〈f〉n =
1

Hn

∫ H/2

−H/2
Xn−1

3 f(X3)dX3. (1.5)

Taking into account that during the MBE growth the upper surface of the multi-
layer structure is stress-free, we assume that the pre-stress acting surfaces parallel to
the mid-surface vanishes, so that S?e3 = 0. Then, following Danescu and Ionescu
(2020), the moments equations are

div(
H

12
M[K] + 〈S?2〉2) = 0 in R0, (

H

12
M[K] + 〈S?2〉2)νext = 0 on ∂R0, (1.6)
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(
H

12
M[K] + 〈S?2〉2) : K = 0 in R0, (1.7)

where S?2 is the in-plane pre-stress andM = {Mij} is related to the in-plane reduced
elasticity, i.e.,

M[A] = 〈D2〉1[A]− 〈C12〉21
〈C11〉1

(I : A)I (1.8)

and D2 is the in-plane part of the Voigt tensor.
Obviously, equations (1.6)-(1.7) are satisfied if the pre-stress S? is such that

〈S?2〉2 = −H
12

M[K]. (1.9)

H D(S)

T (S)

N(S)

R0

(mid-surface)

C0

t⊥(s)

t(s)

n(s)
m(s)

S0

C

(mid-surface)

h(s)

d(s)
b1 b2

Fig. 1.1 Geometric elements of the planar ribbon : thicknessH(S), widthD(S), the tangent and
normal vectors (T (S) andN(S)) along the curve C0 located in the mid-surface R0 and the geo-
metric elements for the shell-ribbon with mid-surface S0 along the curve C: {t(s),n(s),m(s)}
Frenet frame alongC, the vector t⊥ (located in the tangent plane to S0), thickness h(s) and width
d(s).

1.4 Small strain deformation of a ribbon

If S ∈ [0, L] and κ0(S) are the arc-length and the curvature of a planar curve C0

located at R(S) ∈ R2 with tangent T (S) and normal N(S), we define (see Figure
1.1) the planar ribbon R0 ⊂ R2 along C0 of width D = D(S) as

R0 = {R(S) +QN(S);S ∈ (0, L), Q ∈ (−D(S), D(S))}. (1.10)
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Let S0 denotes the mid-surface of a shell, given by its parametric description
u → rS0

(u) ∈ R3, where u = (u1, u2) are coordinates in some subset Ω ⊂ R2.
If δ � 1 is a small parameter, our goal is to provide conditions for the existence
of a map x : R0 → S0 with small strain, i.e. (1.2) holds uniformly with respect to
X ∈ R0.

Let us compute the (Lagrangian) metric tensor of the planar ribbon defined in
(1.10). The local basis, associated to the coordinates (S,Q), is bS = T − Qκ0N
and bQ = N and thus the Lamé coefficients and metric tensor are

L2
S = gSS = 1− 2Qκ0 +Q2κ20, gSQ = 0, L2

Q = gQQ = 1. (1.11)

In order to chose among the multiple ways that map a ribbon on a surface, we
study the particular case inwhich the ribbon cover the shell mid-surface along a given
curve C ⊂ S0 (see Figure 1.1). As a curve in R3, C posses its intrinsic geometric
features : arc-length s, Frenet frame (t(s),n(s),m(s)), curvature κ(s) and torsion
τ(s) and, obviously, the tangent plane to the shell mid-surfaceS0 contains the tangent
vector t(s) to C.

Let u0(s) = (u01(s), u02(s)) be the arc-length parametrization of the curve C ⊂
S0. Then, t = ∂r

∂u0
i

du0
i

ds = bi
du0

i

ds is the description of the tangent vector to C in
the covariant basis {b1, b2} on S0. The main idea is to map the q coordinates in a
neighborhood of the curve C ⊂ S0 in the direction t⊥(s), which is orthogonal to
its tangent vector of the curve and belongs to the tangent plane of the surface , i.e.
t⊥(s) = e3(u0(s)) ∧ t(s). More precisely, if we put

ui(s, q) = u0i (s) + qvi(s, q), v0i (s) = vi(s, 0), i = 1, 2, (1.12)

then the ribon surface is given by

S0 = {rS0(u(s, q)); s ∈ (0, l), q ∈ (−d(s), d(s))}, (1.13)

where d is the ribbon width, and from t⊥(s) = ∂r
∂q (s, 0) = ∂r

∂ui

∂ui

∂q (s, 0) = biv
0
i (s)

we get
v0i (s) = t⊥(s) · bi(u0(s)). (1.14)

If the order of magnitude for the ribbons widths with respect to the curvatures of
the curves C0 and C as well as to the curvature tensor of the surface S0, are such
that :

D(S)κ0(S) = O(δ1/2), d(s)|K(u0(s))|, d(s)κ(s)(t⊥ ·m) = O(δ1/2),
(1.15)

then an estimation of the Lagrangian and Eulerian metric tensors at order O(δ) was
obtained in Danescu and Ionescu (2021). To see that, let us compute the (Eulerian)
metric tensor of the surfaceS0 up to first-orderwith respect to q.Wehave successively
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gqq(s, q) = gij(s, q)
∂ui
∂q

∂uj
∂q

=

(
gij(s, 0) + q

∂gij
∂q

(s, 0)

)
∂ui
∂q

∂uj
∂q

+ O(δ) =

gij(s, 0)v0i v
0
j + q

(
4gij(s, 0)v0i

∂vj
∂q

(s, 0) +
∂gij
∂uk

(s, 0)v0i v
0
j v

0
k

)
+ O(δ)

= |t⊥(s)|2 + qv0i (s)

(
4gij(s, 0)

∂vj
∂q

(s, 0) +
∂gij
∂uk

(s, 0)v0j (s)v0k(s)

)
+ O(δ),

and by choosing

∂vl
∂q

(s, 0) = −1

4
gli(s, 0)

∂gij
∂uk

(s, 0)v0j (s)v0k(s), (1.16)

we obtain gqq = 1 + O(δ).Moreover,

gsq = gij
∂ui
∂s

∂uj
∂q

=

(
gij(s, 0) + q

∂gij
∂q

(s, 0)

)
∂ui
∂s

∂uj
∂q

+ O(δ) =

= gij(s, 0)
du0i
ds

v0j + q

(
gij(s, 0)

dv0i
ds

v0j + 2gij(s, 0)
du0i
ds

∂vj
∂q

(s, 0)+

+
∂gij
∂uk

(s, 0)v0k
du0i
ds

v0j

)
+ O(δ)

and, since gij(s, 0)
du0

i

ds v
0
j = t · t⊥ = 0, using (1.16) we obtain

gsq =
q

2

(
2gij(s, 0)

dv0i
ds

v0j +
∂gij
∂uk

(s, 0)
du0i
ds

v0kv
0
j

)
+ O(δ) =

=
q

2

d

ds
(t⊥ · t⊥) + O(δ).

Finally,

gss(s, q) =

(
gij(s, 0) + q

∂gij
∂uk

∂uk
∂q

)
∂ui
∂s

∂uj
∂s

+ O(δ) = gij(s, 0)
du0i
ds

du0j
ds

+

+ q

(
2gij(s, 0)

du0i
ds

dv0j
ds

+
∂gij
∂uk

(s, 0)v0k
du0i
ds

du0j
ds

)
+ O(δ) =

= |t(s)|2 + 2q

(
dt⊥
ds
· t
)

+ O(δ) = 1 + 2q

(
dt⊥
ds
· t
)

+ O(δ).

But, since t⊥ · t = 0 we have t⊥ = (t⊥ ·n)n+ (t⊥ ·m)m so that, using the Frenet
formulae, we obtain

dt⊥
ds
· t = −dt

ds
· t⊥ = −κ(t⊥ ·m). (1.17)

This last result emphasize the role played by the geodesic curvatureκgeo = κ(t⊥·m),
which is the projection of the curvature of C into the tangent plane of the manifold
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S0, in the estimation of the metric tensor. To summarize, we obtained :

gss = 1− 2qκ(s)t⊥ ·m + O(δ), gsq = O(δ), gqq = 1 + O(δ), (1.18)

gSS = 1− 2Qκ0(S) + O(δ), gSQ = 0, gQQ = 1 + O(δ). (1.19)

By using (s, q) = (S,Q) ∈ (0, L) × (−D,D), we are now able to estimate the
Green-Lagrange strain tensor of the map x : R0 → S0. Since the gradient tensor F
can be written as F = bs ⊗ bS + bq ⊗ bQ, taking into account (1.19) and (1.18),
we obtain

F TF = L2
sbS ⊗ bS + bQ ⊗ bQ + O(δ) = I − (1− gss/gSS)eS ⊗ eS + O(δ)

and thus

E2 =
1

2
(
gss
gSS
− 1)eS ⊗ eS + O(δ) =

= Q[κ0(S)− κ(S)(t⊥ ·m)]eS ⊗ eS + O(δ).

(1.20)

We conclude that by choosing the curvature of the planar curve C0 equal to the
geodesic curvature of the supporting curve of the shell-ribbon C ⊂ S0 the Green-
Lagrange tensor is small, i.e.

if κ0 = κgeo = κt⊥ ·m, then E = O(δ). (1.21)

1.5 From theory to fabrication of a nano-sphere

Let (r, θ, φ) be the spherical coordinates in R3 and denote by er = er(θ, φ),
eθ = eθ(θ, φ), eφ = eφ(φ) the local physical basis. Let S0 denote the surface of
the sphere of radius R∗ with Lamé coefficients Lθ = R∗, Lφ = R∗ sin(θ) and the
unit normal e3(θ, φ) = er(θ, φ). Then, the curvature tensor on S0 is

K = − 1

R∗
(eθ ⊗ eθ + eφ ⊗ eφ) .

Let C ⊂ S0 be a given curve with arc-length s, parametric description s →
(θ0(s), φ0(s)) and geodesic curvature κgeo(s). If C0 is the planar curve with curva-
ture κ0(s) = κgeo(s) and R0 is the planar ribbon along C0 (see definition (1.10))
with the width d(s) such that (1.15) holds then, from the small-strain membrane
condition (1.2) we get

K =
1

R∗
(I2 + O(δ)).

From the plate-to shell model we find that a shell-ribbon S0 of a spherical shell
of radius R∗ along the curve C, could be designed from a planar ribbon R0 along
a curve C0 if (1.21) holds. The pre-stress momentum have to be designed such that
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〈S∗2〉2 = − H3

12R∗
M[I2] and can be obtained with an isotropic and homogeneous

pre-stress, i.e., S∗2 = σ∗I2, where

〈σ∗〉2 =
H

12R∗

〈C2
11〉1 + 〈C12〉1〈C11〉1 − 2〈C12〉21

〈C11〉1
. (1.22)

1.5.1 Optimal covering with constant parallel ribbons

For constant latitude curves, i.e., θ(s) = θ0, we have φ0 = s/(R∗ sin(θ0)) so
that d/R∗ = O(δ1/2), d cot(θ0)/R∗ = O(δ1/2) and the goedesic curvature is
κ0 = κgeo = cot(θ0)/R∗. This means that the width of successive ribbons will
decrease with the latitude. As a straightforward consequence, the fit of successive
positions and widths of constant latitude ribbons for a complete cover of the sphere
is a nontrivial problem. We recall here a result from Danescu and Ionescu (2021)
concerning a semi-analytical optimal covering of the sphere.

Fig. 1.2 An optimal covering of the sphere with constant latitude ribbons obtained by implementing
the solutions of recursive system (1.24) for δ = 10−2.

If θk denote the latitudes of the supporting curve for successive ribbons then, for
the kth ribbon, the arc-length is such that s ∈ (−πR∗ cos θk, πR∗ cos θk) and the
angular variable θ(q) = π/2− θk − q/R∗ for q ∈ (−dk, dk). A symmetric solution
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can be obtained as follows : take θ0 = 0, θ
k

= −θk and notice that the covering
condition and (1.15) can be expressed as

dk ≤ δ1/2R∗min(1, cot θk), R∗(θk+1 − θk) = dk + dk+1. (1.23)

It follows that for θ < π/4we can consider constant width ribbons with θk = 2kδ1/2

and thus dk = δ1/2R∗ for |k| ≤ b π
8
√
δ
− 1

2c (here [x] is the entire part of x) while
for k > b π

8
√
δ
− 1

2c we have to solve recursively the nonlinear equation

x− δ1/2 cotx = θk +
dk
R∗

, (1.24)

whose solution θk+1 provide

dk+1 = R∗(θk+1 − θk). (1.25)

An implementation of this procedure for δ = 10−2 provide the design illustrated in
Figure 1.2.

1.5.2 Elastic layers with pre-stress : material parameters

The experimental implementation of the sphere coveringwith variablewidth ribbons,
presented in the previous subsection, is difficult due to very sharp angles between
successive ribbons near the vertical symmetry axis, and thus incompatible with the
spatial resolution of the photo-lithography processes. However, in order to illustrate
the role of the geodesic curvature in the design problem we focus here on the partial
cover of the sphere with constant latitude ribbons.

Since the planar design is dependent on the target surface curvature we start by the
epitaxial growth of the bi-layer semiconductor structure : a 60 nm thick In0.88Ga0.12P
layer (further denoted InGaP) grown on a 145 nm thick InP layer. The bi-layer was
grown on an InP substrate previously covered by a 500 nm thick InGaAs sacrifical
layer. Using data from the litterature, we have :

C InP
11 = 101.1 GPa, C InGaP

11 = 105.8 GPa,
C InP

12 = 56.1 GPa, C InGaP
12 = 56.8 GPa,

C InP
44 = 45.6 GPa, C InGaP

44 = 48.5 GPa,
(1.26)

so that the caracteristic stress Σ = 100 GPa. For δ = 10−2 we verify that indeed

〈Cij〉2 = ΣO(δ), 〈Cij〉3 −
1

12
〈Cij〉1 = ΣO(δ), (1.27)

so that the assumption of weak transversal homogeneity is fullfilled. The lattice
parameters for the InP and InGaP layers are respectively
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aInP = 5.8687 Å, aIn0.88Ga0.12P = 5.8185 Å, (1.28)

and correspond to a spherical pre-strain (extension) in the upper layer of m =
diag(0.86%, 0.868%). For pratical applications, it is the fraction of Ga in the upper
layer (InαGa1−αAs) which has to be fixed as a function of the radius of the target
sphere, but for simplicity here we use the equation (1.9) in order to compute the
radius of the object that can be obtained at α = 0.12.

Fig. 1.3 The planar grid designed to cover the sphere. The horizontal straight linewill fully cover the
ecuator while the lower and upper parts will cover the North and South hemispheres, respectively.
Notice the slight modification of the length for small arcs near the South pole needed in order to
keep the relaxed structure attached through the filled round dot (with a characteristic size larger
than the lateral dimensions of the curved ribbons) to the substrate during the under-etching process.

1.5.3 Design and fabrication

In order to cover the sphere of radius R∗ with constant latitude ribbons we notice
that the radius of the ribon at latitude θ is R∗ cos θ and their geodesic curvature,
which is exactly the inverse of tha planar design radius, is constant and equal to
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Fig. 1.4 SEM image of the sample after the developement process before the reactive ion etching
(RIE).

κ(θ) = 1
R∗

tan θ. For simplicity, we chose the width of all ribbons equal to 1.5 µm
(for visual comfort, the actual scale in Figure 1.3 is not the same as the implemented
design in 1.5) and design a geodesic half-circle to ensure connectivity between the
constant latitude ribbons. Using the intersection of the two straigt lines in figure
1.3 as the origin of the coordinate system in the plane, positions of the 8 pairs of
symetric arcs corresponding to constant lattitude arcs located at±nπ18 (n = 1, . . . , 8)
in the North and South hemi-sphere. Their corresponding centers radii and angular
extensions are

C±n = (0,±R
(
nπ

18
+

1

tan θ

)
, Rn = R/ tan θ, θn = π sin(

nπ

18
). (1.29)

Fabrication of the design illustrated in Figure 1.3 involve several steps : we start by
the deposition of a 90 nm thick SiO2 hard mask followed by the deposition of a 130
nm thick negative resist film (AR-N7520.07). Next step is electron beam lithography
performed by using a modified SEM (FEI Inspect F) and the RAITH Elphy Quantum
software. The result after the developement of the lithographic process is illustrated
in Figure 1.4. The reactive ion etching (RIE) is then performed in order to transfer
the pattern into the silica mask and then into the multilayer structure. The result
of this process is represented in Figures 1.5 (both optical microscope and SEM
images). At this step, the structure is still attached on the sacrificial layer but the
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Fig. 1.5 Optical microscope view of the structure obtained after etching the multilayer material,
still maintained attached to the substrate by the sacrificial layer.

lateral relaxation of the pre-stress in the bilayer material takes place. Despite the
small width (1.5 µm) and the ultra-small thickness (205 nm) the axial pre-stress is
still present in the structure and will be released only during the process of under-
etching of the sacrificial layer. In order to keep the relaxed structure attached to the
substrate the radius of the attachement circle (designed in the lower part of Figure
1.3) have to be slightly larger then the width of various arcs of the design.

Next, the under-etching is performed using diluted FeCl3 to selectively remove the
InGaAs sacrificial layer so as to release the pre-stress in the multilayer. Successive
H2O, acetone and methanol rising baths were performed before a CO2 supercritical
drying step, needed in order to circumvent the mechanical actions induced by the
surface tension at liquid/solid interfaces. As expected, the fully relaxed structure
covers the surface of the sphere with constant latitutde ribbons, with only small
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Fig. 1.6 The relaxed shape confirms that the geodesic curvature design relax as expected into
constant latitude circles on the sphere.

alignement defects at the ends. Obviously, a large variety of different designs can
be implemented but, as already stated, techological limitations associated with the
photolithographic process (sharp angles) do not allow all of these designs to be
sucessfully implemented.

1.6 Conclusions and perspectives

The fabrication of nano-shells, is in itself a technological challenge as it encompass
the traditional planar technology. One way to obtain such structures is to release the
pre-stressed nano-plates, fabricated by layer-by-layer deposition, to obtain a target
shell geometry. The presence of several geometrical and technological restrictions
can be circumvent by the use of three-dimensional thin ribbons in order to cover
a desired surface. The geodesic curvature plays an fundamental role for the design
of both the geometry of ribbons that cover arbitrary surfaces starting from planar
structures and the pre-stress needed to obtained them. The main result shows that, for
multilayered structures with weak-transversal homogeneity, if the curvature of the
planar ribbon is equal to the geodesic curvature of the supporting curve then there
exists a pre-stress such that a small-width and small-thickness planar ribbon relaxes
toward a 3D ribbon covering the surface along the suporting curve. We illustrate our
theoretical results by the design and fabrication of a partial cover of the sphere with
constant-latitude ribbons starting from a planar design containing arcs with constant
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Fig. 1.7 Top: Optimal covering of the sphere for δ = 10−2. Alternative distribution of the constant
latitude arcs on the left (respectively right) part of the initial design present in Figure 1.2 to avoid
sharp angles along the vertical symmetry axis. Bottom: zoom on the central zone.

curvature and a bilayer semi-conductor bilayer material with controled composition
(In0.88Ga0.12P/InP).

Extensions of these results to obtain a complete cover of the sphere are limited by
the resolution of the lithographic process, difficult to implement at very sharp angles.
A solution to overcome this technological drawback of the (sharp angles) lithographic
process is illustrated in Figure 1.7. Here, in order to avoid the sharp angles between
successive ribbons located at constant latitude we chose to design alternative left
and right constant radius arcs corresponding to successive constant latitude ribbons.
The ideal picture in Figure 1.7 does not include a small vertical segment, which is
nedded in order to attach the constant curvature arcs to the structure. In fact, the
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design in Figure 1.7 contains exactly the same arcs as that of the Figure 1.2 but their
positions are such that sharp angles along the vertical symmetry line in Figure 1.2
are avoided. However, a closer look to the design in Figure 1.7, reveals very small
distances between successive ribbons (also present in the initial design in Figure 1.2
between large latitude ribbons.

The general results in Danescu and Ionescu (2021) provide solutions to both par-
tial and total covers of other non-developable (orientable or not) three-dimensional
surfaces as the torus and theMobius ribbon, extending the classical setting of isomet-
ric transformations. We mention here two interesting extensions: the first one con-
cerns the class of arbitrary transversal homogeneities (and not only weak transversal
homogeneities) in which case one has to adapt the general setting in Danescu and
Ionescu (2020). The second perspective concerns the fabrication of more complex
geometries which require not only bending but also torsion, a problem already dis-
cussed in Danescu and Ionescu (2021) which is dependent to more complex (not
only hydrostatic) pre-stress. Controled spatial modulation of the pre-stress, and in
particular including controlled shear still remains a technological landmark at the
nano-scale.
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