N-free extensions of posets.Note on a theorem of P.A.Grillet - Institut Camille Jordan Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2005

N-free extensions of posets.Note on a theorem of P.A.Grillet

Résumé

Let $S_{N}(P)$ be the poset obtained by adding a dummy vertex on each diagonal edge of the $N$'s of a finite poset $P$. We show that $S_{N}(S_{N}(P))$ is $N$-free. It follows that this poset is the smallest $N$-free barycentric subdivision of the diagram of $P$, poset whose existence was proved by P.A. Grillet. This is also the poset obtained by the algorithm starting with $P_0:=P$ and consisting at step $m$ of adding a dummy vertex on a diagonal edge of some $N$ in $P_m$, proving that the result of this algorithm does not depend upon the particular choice of the diagonal edge choosen at each step. These results are linked to drawing of posets.
Fichier principal
Vignette du fichier
Nfreezaguiafinal.pdf (157.05 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00008643 , version 1 (13-09-2005)

Identifiants

Citer

Maurice Pouzet, Nejib Zaguia. N-free extensions of posets.Note on a theorem of P.A.Grillet. 2005. ⟨hal-00008643⟩
150 Consultations
141 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More